USN

10MAT31
Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Engineering Mathematics - III

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

1 a. Find the Fouricr series for the function $f(x)=x+x^{2}$ over the interval $-\pi \leq x \leq \pi$. Hence deduce that:
i) $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots .$.
ii) $\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$.
(07 Marks)
b. Expand the function $f(x)=x(\pi-x)$ over the interval $(0, \pi)$ in half range Fourier cosine series.
(06 Marks)
c. Find the constant term and the first two harmonies for the function $f(\theta)$ given by the following table:
(07 Marks)

θ (in degrees)	0	60	120	180	240	300	360
$\mathrm{f}(\theta)$	0.8	0.6	0.4	0.7	0.9	1.1	0.8

2 a. Show that the Fourier transform of the function

$$
f(x)=\left\{\begin{array}{cc}
1-x^{2}, & |x| \leq 1 \\
0, & |x|>1
\end{array} \text { is } F(\alpha)=\frac{2 \sqrt{2}}{\alpha \sqrt{3}}(\sin \alpha-\alpha \cos \alpha) .\right.
$$

Hence deduce that $\int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$.
(07 Marks)
b. Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$.
(06 Marks)
c. If the Fourier sine transform of $f(x)$ is given by $F_{5}(u)=\frac{\pi}{2} e^{-2 u}$, find the function $f(x)$.
(07 Marks)
3 a. Find the various possible solutions of two-dimensional Laplace equation by method of separation of variables.
(07 Marks)
b. Obtain the D'Aiembert's solution of the wave equation $u_{t t}=c^{2} u_{x x}$ subject to the conditions $u(x, 0)=f(x)$ and $\frac{\partial u}{\partial t}(x, 0)=0$.
(06 Marks)
c. Solve the one-dimensional heat equation $\mathrm{c}^{2} \mathrm{u}_{\mathrm{xx}}=u_{t}, 0<\mathrm{x}<\pi$ subject to the conditions $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(\pi, \mathrm{t})=0, \mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{0} \sin \mathrm{x}$ where u_{0} is a non-zero constant.
(07 Marks)
4 a. Find a curve of the best fit of the form $y=a x^{b}$ to the following data:
(07 Marks)

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

b. For conducting a practical examination, the chemistry department of a college requires 10, 12 and 7 units of 3 chemicals x, y and z respectively. The chemicals are available in 2 types of boxes: Box A and Box B. Box A contains 3, 2 and 1 units of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ respectively and cost Rs.300. Box B contains 1, 2 and 2 units of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ respectively and costs Rs.200. Find how many boxes of each type should be bought by the department so that the total cost is minimum. Solve graphically.
(06 Marks)
c. Solve the following LPP by simplex method:

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+4 \mathrm{x}_{2}+3 \mathrm{x}_{3}$
Subject to the constraints $3 x_{1}+4 x_{2}+2 x_{3} \leq 60 \quad 2 x_{1}+x_{2}+2 x_{3} \leq 40$

$$
x_{1}+3 x_{2}+2 x_{3} \leq 80
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
$$

(07 Marks)

PART - B

5 a. Use Newton-Raphson method to find an approximate root of the equation $\mathrm{x} \log _{10} \mathrm{x}=1.2$ correct to 5 decimal places that is near 2.5 .
(07 Marks)
b. Use Relaxation method to solve the following system of linear equations:
$8 x+3 y+2 z=13$
$x+5 y+z=7$
$2 x+y+6 z=9$
(06 Marks)
c. Find the numerically largest eigen value and the corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right]$ by power method taking $X^{(0)}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$. Perform 6 iterations.(07 Marks)

6 a. Find the interpolating polynomial for the function $y=f(x)$ given by $f(0)=1, f(1)=2$, $f(2)=1, f(3)=10$. Hence evaiuate $f(0.75)$ and $f(2.5)$.
(07 Marks)
b. Apply Lagrange's method to find the value of x corresponding to $f(x)=15$ from the following data:
(06 Marks)

x	5	6	9	11
$f(x)$	12	13	14	16

c. Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using Simpson's $\frac{3}{8}^{\text {th }}$ rule dividing the interval $(0,1)$ into 6 equal parts. Hence deduce the approximate value of π.
(07 Marks)
7 a. Solve the wave equation $u_{t t}=4 u_{x x}$ subject to the conditions $u(0, t)=0, u(4, t)=0$, $u_{t}(x, 0)=0$ and $u(x, 0)=x(4-x)$ by taking $h=1, k=0.5$ upto four steps.
(07 Marks)
b. Find the numerical solution of the equation $u_{x x}=u_{t}$ when $u(0, t)=0, u(1, t)=0, t \geq 0$ and $\mathrm{u}(\mathrm{x}, 0)=\sin \pi \mathrm{x}, 0 \leq \mathrm{x} \leq 1$. Carryout computations for two levels taking $\mathrm{h}=\frac{1}{3}$ and $\mathrm{k}=\frac{1}{36}$.
(07 Marks)
c. Solve Laplace's equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in the foilowing Fig.Q7(c).

Fig.Q7(c)
(06 Marks)
8 a. Find the z-transform of $5 n^{2}+4 \cos \frac{n \pi}{2}-4^{n+2}$ and $\sinh n \theta$.
(06 Marks)
b. Obtain in inverse z-transform of $\frac{z(2 z+3)}{(z+2)(z-4)}$.
(07 Marks)
c. Using z-transforms, solve $u_{n+2}+3 u_{n+1}+2 u_{n}=3^{n}$ given $u_{0}=0, u_{1}=1$.
(07 Marks)

USN

10ES32

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018

Analog Electronic Circuits

Time: 3 hrs .

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Using Shock'ey's equation, determine the diode current at $25^{\circ} \mathrm{C}$ for a silicon diode with $I_{S}=20 \mathrm{pA}$ and $V_{D}=0.7 \mathrm{~V}$. Find the same when $V_{D}=0.5 \mathrm{~V}$.
(04 Marks)
b. Sketch the output waveform for the following circuit shown in Fig. Q1 (b), and plot the transfer characteristics -
(06 Marks)

Fig. Q1 (b)
c. Check the condition for the foilowing circuit shown in Fig. Q1 (c) to work as clamper. Sketch the output waveform.
(05 Marks)

Fig. Q1 (c)
d. Find the current in the loop, the output voltage, and the power absorbed by each device.
(05 Marks)

2 a. Derive the expression for I_{B} and $V_{C E}$ of an emitter bias circuit.
(04 Marks)
b. Check the condition for the approximate analysis of the voltage-divider bias circuit and obtain the Q-point using approximate analysis, given : $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \beta=120, \mathrm{R}_{\mathrm{C}}=1.5 \mathrm{~K} \Omega$, $R_{E}=620 \Omega, R_{1}=33 \mathrm{k} \Omega$ and $R_{2}=4.7 \mathrm{k} \Omega$. Mark the Q -point on the DC load - line.
(06 Marks)
c. Determine the values for the following circuit: $\mathrm{V}_{\mathrm{E}}, \mathrm{I}_{\mathrm{E}}, \mathrm{V}_{\mathrm{CE}}, \mathrm{V}_{\mathrm{C}}, \mathrm{I}_{\mathrm{B}}$ and β.
(06 Marks)

Fig. Q2 (c)
d. Design a fixed bias circuit for $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \beta=120, \mathrm{I}_{\mathrm{C}_{\mathrm{Q}}}=1.4 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}_{\mathrm{Q}}}=5 \mathrm{~V}$.
(04 Marks)

3 a. Using r_{e} model, derive the expressions for Z_{i}, Z_{o} and A_{V} of a fixed bias circuit. (06 Marks)
b. Using exact analysis, determine Z_{i}, Z_{0} and A_{V} for the voltage-divider bias network if $\mathrm{R}_{\mathrm{i}}=220 \mathrm{k} \Omega, \mathrm{R}_{2}=56 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=6.8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=2.2 \mathrm{k} \Omega, \beta=180, \mathrm{r}_{0}=50 \mathrm{k} \Omega$ and $V_{C C}=20 \mathrm{~V}$.
c. For the network shown in Fig. Q3 (c), determine Z_{i}, Z_{o} and A_{v} -
(10 Marks)
(04 Marks)

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{fe}}=150 \\
& \mathrm{~h}_{\mathrm{ie}}=2.75 \mathrm{k} \Omega \\
& \mathrm{~h}_{\mathrm{Oe}}=25 \mu \mathrm{~S}
\end{aligned}
$$

4 a. Explain the frequency response curves for RC-coupled, transformer-coupled and directcoupled amplifiers, with reasons for the drop in gain.
(09 Marks)
b. Determine the mid-band gain and the lower cut-off frequencies $f_{L_{S}}$ and $f_{L_{C}}$ for the voltagedivider bias BJT amplifier with $\mathrm{C}_{\mathrm{S}}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{C}}=10 \mu \mathrm{~F}, \quad \mathrm{R}_{\mathrm{s}}=1 \mathrm{k} \Omega, \quad \mathrm{R}_{1}=36 \mathrm{k} \Omega$, $\mathrm{R}_{2}=8.2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=1.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=4.7 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \beta=100$ and $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$.
(11 Marks)

PART-B

5 a. For a Darlington connection, derive the expressions for Z_{i}, Z_{0}, A_{i} and A_{V}.
(12 Marks)
b. Mention the advantages and disadvantages of the negative feedback.
(04 Marks)
c. Calculate the gain, input impedance and output impedance of a voltage-series-feedback amplifier having $A=-300, R_{i}=1.5 \mathrm{k} \Omega, R_{0}=50 \mathrm{k} \Omega$ and $\beta=-\frac{1}{15}$.
(04 Marks)
6 a. Enumerate the types of power amplifiers along with their efficiency, conduction angle and Q-point.
(05 Marks)
b. Prove that the maximum efficiency of a class-B power anmplifier is 78.5%.
(05 Marks)
c. Calculate the efficiency of the following circuit shown in Fig. Q6 (c), for an input current swing of 10 mA .
(05 Marks)

Fig. Q6 (c)
d. Along with the circuit diagram, explain the working of Class-C amplifier.
(05 Marks)
7 a. Along with the circuit diagram, explain the working of a BJT phase-shift osciliator.
(06 Marks)
b. Design a Wien-bridge oscillator for $f_{0}=6 \mathrm{kHz}$, making suitable assumptions.
(06 Marks)
c. Along with proper diagrams, explain the series resonant and parallel resonant crystal oscillators using BJT.
(68 Marks)
8 a. Explain the operation of JFET amplifier using fixed bias. Draw the JFET small signal model, and derive the expressions for Z_{i}, Z_{o} and A_{V}.
(10 Marks)
b. With necessary circit diagram, obtain the expressions for Z_{i}, Z_{o} and A_{V} for an E-MOSFET voltage-divider configuration.
(10 Marks)

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Logic Design

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Represent the canonical minterm forms in decimal notation :
i) $f_{1}=x \bar{y}+y z$
ii) $f_{2}=\bar{a} c+b c \bar{d}+a d$.
(05 Marks)
b. Show that $f(a, b, c, d)=\sum m(0,1,2,5,6,8,9,10,13,14)=\pi M(3,4,7,11,12,15)$.
(08 Marks)
c. Simplify the following Boolean function and realize the simplified expression using basic gates.
$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})=\sum \mathrm{m}(0,1,4,8,9,11,15,16,24,26)+\mathrm{dm}(10,20,22,23,25,27,31)$.
(07 Marks)
2 a. Simplify the Boolean function $f(a, b, c, d)=\sum m(0,1,2,7,8,9,10,13,15)$ using Quine Mc Cluskey tabulation method and verity the answer using k-map.
(10 Marks)
b. Simplify the Boolean function $\left.f(a, b, c, d)=\sum m_{i} 0,2,3,4,5,8,10,11\right)+\operatorname{dm}(7,13,14)$ using Map entered variable k-map. With "d" as map' entered variable, verify the answer using k-map,.
(10 Marks)

3 a. Design a combinational circuit using basic gates to convert excess 3 binary code to BCD code.
(10 Marks)
b. Implement full adder using decoder.
(05 Marks)
c. Design a 4 to 16 decoder using 3 to 8 decoders.
(05 Marks)

4 a. Design a 4 bit ECD adder circuit using 7483IC with self correcting circuit. That is a provision to be made in the circuit, in case the sum of BCD exceeds 9 . (10 Marks)
b. Realize the Boolean function $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(0,1,4,5,6)$ using $4: 1$ mux. (05 Marks)
c. Explain !ook - ahead carry adder and give its advantages and disadvantages.
(05 Marks)

PART - B

5 a. Obtain characteristic equation of a S-R flip-flop. (05 Marks)
b. Explain the working of an universal shift register. (05 Marks)
c. Expiain the working of a master-slave JK flip-flop with timing diagram for master and slave. Show how race around condition is eliminated.
(10 Marks)

6 a. Design an asynchronous mod-8 counter using JK flip-flop and draw its timing diagram.
b. Explain why asynchronous counter is called ripple counter.
(05 Marks)
c. Explain mealy and Moore sequential circuit models.
(05 Marks)

7 a. Draw and explain Moore JK flip-flop state diagram.
(05 Marks)
b. For the state machine shown Fig.Q7(b) obtain : i) state table ii) Transition table iii) excitation table for JK flip-flop iv) logic diagram.

Fig.Q7(b)

8 a. Design a cyclic BCD up synchronous counter using T thip-flops. ($\mathbf{1 0}$ Marks)
b. Design a cyclic synchronous counter using D flip-flops to generate a sequence of 5421 code. (Hint : 0, 1, 2, 3, 4, 8, 9, 10, 11, $120,1 \cdots$) sequence.
(10 Marks)

10ES34
Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Network Analysis

Time: 3 hrs.
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

1 a. Define the following terms with examples :
i) Lumped Element
ii) Active Element
iii) Practical Source.
(03 Marks)
b. Find the current I_{3} using mesh analysis for the circuit shown in fig.Q1(b), if the circuit is operating at frequency $5000 \mathrm{rad} / \mathrm{s}$.
(07 Marks)

c. For the circuit shown in fig. Q1(c), find the power delivered by dependent source using node analysis.
(06 Marks)
Fig.Q1(b)

Fig.Q1(c)

d. Find the resistance $R_{A B}$ for the network shown in fig. $\mathrm{Q}(\mathrm{d})$, using $\Delta-\mathrm{Y}$ conversion.
(04 Marks)

Fig.Q1(d)

2 a. Define the following terms with example :
i) Graph ii) Tree
iii) Co - tree.
(03 Marks)
b. For the circuit in fig.Q2(b), write the tie - set matrix using AB, BC and CA or the links of the tree. Obtain the equilibrium equations in matrix from using KVL and calculate all loop currents and branch voltages.
(10 Marks)

Fig.Q2(b)

1 of 4
c. Draw the oriented graph for the circuit shown in fig.Q2(c). Also find fundamental cut - set schedule using $X_{c 1}, R_{2}$ and $X_{L 1}$ or the twigs of the tree. Find admittance matrix also.
(04 Marks)

Fig.Q2(c)

d. Find the dual of the circuit shown in fig.Q2(d).
(03 Marks)

Fig.Q2(d)

3 a. Find V_{x} using superposition for the circuit shown in fig.Q3(a).
(08 Marks)

Fig.Q3(a)

b. Find the voltage V_{L} across the inductor and verify reciprocity theorem for the circuit shown in Fig.Q3(b).
(06 Marks)

Fig.Q3(b)

c. State and prove Milkman's theorem.
(06 Marks)
a. Find the Thevenin's equivalent circuit across terminals a \& b for the circuit shown in fig.Q4(a). Also find the current I_{L} using this equivalent circuit.
(08 Marks)

Fig.Q4(a)
b. State and prove Norton's theorem.
(05 Marks)
c. Find Z_{L} for maximum power transfer for the circuit shown in fig.Q4(c). And also find the average maximum power absorbed by Z_{L}.
(07 Marks)

Fig.Q4(c)

PART - B

5 a. For the circuit shown in fig.Q5(a), find the transfer function, resonant frequency half power frequencies, bandwidth and Q - factor.
(10 Marks)

Fig.Q5(a)

b. Define the term Q - factor. Using this definition find the Q - factor of an inductor and a capacitor.
(05 Marks)
c. For the network shown in fig.Q5(c), find the value of C for resonance to take place at $\mathrm{w}=5000 \mathrm{rad} / \mathrm{s}$.
(05 Marks)

Fig.Q5(c)

6 a. Write a short note on Initial and Final conditions of circuit elements under switching conditions.
(06 Marks)
b. In the circuit shown in fig.Q6(b), the switch S_{1} has been open for a long time before closing at $t=0$. Find $V_{c}\left(0^{+}\right), i_{L}\left(0^{+}\right), V c(\infty), i_{L}(\infty), \frac{d i_{L}}{d t}\left(0^{+}\right)$and $\frac{d^{2} i_{L}}{d t^{2}}\left(0^{+}\right)$.
(06 Marks)

c. For the circuit shown in fig.Q6(c), calculate $\mathrm{i}_{\mathrm{L}}\left(0^{+}\right) \frac{\mathrm{di}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{dt}}, \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{V}_{\mathrm{c}}\left(0^{+}\right), \mathrm{V}_{\mathrm{R}}(\infty), \mathrm{V}_{\mathrm{c}}(\infty)$ and $i_{L}(x)$
(08 Marks)

Fig.Q6(c)

7 a. Find $V_{o}(t)$ of the circuit shown in fig.Q7(a).
(10 Marks)

Fig.Q7(a)

b. Find the impulse tesponse of the circuit shown in fig.Q7(b).
(06 Marks)

c. Find the Laplace Transform of non - sinusoidal periodic waveform shown in fig.Q7(c). (04 Marks)

Fig.Q7(c)

a. Find the Z - transform in terms of Y - parameters.
(04 Marks)
b. For the network shown in fig.Q8(b), find the transmission line parameters.

Fig.Q8(b)

c. Find the h - parameters of the network shown in fig.Q8(c)
(08 Marks)

Fig.Q8(c)

Third Semester B.E. Degree Examination, Dec.2017/Jan, 2018 Electronic Instrumentation

Time: 3 hrs.

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

a. The expected value of the voltage across a resistor is $\$ 0 \mathrm{~V}$. But, the measurement gives a value of 79 V . Calculate
(i) Absolute Error
(ii) \% Error
(iii) Relative Accuracy
(iv) $\%$ of Accuracy. (05 Marks)
b. Fig.Q1(b) shows a series circuit of R_{1} and R_{2} connected to a 100 V dc source. If the voltage across R_{2} is to be measured by voltmeters having
(i) a sensitivity of $1 \mathrm{k} \Omega / \mathrm{V}$ and (ii) a sensitivity of $20 \mathrm{k} \Omega / \mathrm{V}$

Find which voltmeter will read the accurate value of voltage across R_{2}, if both the voltmeters are used on the 50 V range.
(10 Marks)

c. Draw the circuit diagram of dc coupled peak voltmeter and illustrate the working principle. Mention the limitations of peak responding voltmeter.
(05 Marks)

2 a. Discuss about the principle of operation of integrating type DVM with the help of block diagram and associated waveforms.
(08 Marks)
b. With the help of block diagram, explain how a time base with a range of $1 \mu \mathrm{~s}-1 \mathrm{sec}$ can be generated using fixed frequency crystal oscillator.
(05 Marks)
c. Define the resolution and sensitivity of digital voltmeter.
(04 Marks)
d. Mention the advantages and limitations of Ramp type DVM.
(03 Marks)

3 a. With the help of block diagram, explain the role of vertical amplifier in deciding the sensitivity and bandwidth of oscilloscope. (08 Marks)
b. Draw the block diagram of dual beam CRO and illustrate its working principle. (07 Marks)
c. Discuss the need for delay line in the vertical section of an oscilloscope.
(05 Marks)

4 a. Explain the working principle of sampling oscilloscope with a neat block diagram and associated waveforms.
(10 Marks)
b. With a neat block diagram and associated waveforms explain the working principle of digital storage oscilloscope.
(10 Marks)

PART - B

5 a. Draw the block diagram of modern laboratory signal generator and explain the function of its constituent blocks.
(10 Marks)
b. Specify the requirements of a pulse which can be generated using pulse gerierator. (03 Marks)
c. With a neat block diagram explain how output frequency can be automatically varied over predetermined range using sweep frequency generator.
(07 Marks)

6 a. Obtain the Thevenin's equivalent circuit of a slightly unbalanced Wheatstone's bridge. Calculate the current through the galvanometer connected between bridge output terminals if the resistance of 3 arms of the bridge is 700Ω each and the resistance of $4^{\text {th }}$ arm of the bridge is 735Ω.
($\mathbf{1 0}$ Marks)
b. Derive the expression for unknown capacitance and its leakage resistance in a capacitance comparison bridge.
(07 Marks)
c. Mention the applications of Maxwell bridge and Wein bridge.
(03 Marks)

7 a. Discuss about the parameters to be considered for any electrical transducer.
(05 Marks)
b. What is a strain gauge? Explain the construction and working principle of semiconductor strain gauge.
(06 Marks)
c. Mention the advantages of thermistor.
d. Explain the working principle of variable reluctance type transducer.
(05 Marks)

8 a. Explain the following with respect to thermocouple:
(i) Seebeck effect
(ii) Thomson effect
(iii) Thermocouple types (07 Marks)
b. Mention the classification of display devices.
(05 Marks)
c. With a neat sketch explain how RF power can be measured using Bolometer bridge.
(08 Marks)

Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Field Theory

Time: 3 hrs.

Note: Answer FIVE full questions, selecting at least TWO questions from each port.

PART - A

1 a. State and prove gauss law for electrostatics.
(06 Marks)
b. If $\mathrm{E}=\left(-8 \mathrm{xy} \hat{\mathrm{a}}_{x}-4 \mathrm{x}^{2} \hat{\mathrm{a}}_{y}+\hat{\mathrm{a}}_{z}\right) \mathrm{V} / \mathrm{mt}$. Find the work done in carrying a 6 C charge from $\mathrm{A}(1,8,5)$ to $\mathrm{B}(2,18,6)$ aiong the path $\mathrm{y}=3 \mathrm{x}+2, z=\mathrm{x}+4$
(06 Marks)
c. Four point charges each $20 \mu \mathrm{c}$ are at $\mathrm{A}(4,0,0), \mathrm{B}(-4,0,0), \mathrm{C}(0,4,0), \mathrm{D}(0,-4,0)$ respectively. Find the force on a $200 \mu \mathrm{C}$ point charge at $(0,0,3)$.
(08 Marks)
2 a. Derive an equation for divergence of flux density in differential form, and hence explain Gauss divergence theorem.
(08 Marks)
b. A 15 nC point charge is at the origin in free space. Calculate v_{1} if point P is located at $(2,-3,-1)$. Also calculate v_{1} at P if $v=0$ at $(6,5,4)$
(06 Marks)
c. Deduce an expression for energy and energy density in an electro static field.
(06 Marks)
3 a. Using Poisson's equation, obtain the expression for junction potential in a p-n junction.
(08 Marks)
b. Derive Laplace's equation and hence write the expression for Laplacian of V in cylindrical and spherical co-ordinates.
(06 Marks)
c. Find E at $P(3,1,2)$ for the field of two co-axial conducting cylinders. $V=50 \mathrm{~V}$ at $\mathrm{r}=2 \mathrm{~m}$, $\mathrm{V}=20 \mathrm{~V}$ at $\mathrm{r}=3 \mathrm{~m}$.
(06 Marks)

4 a. Derive an expression for magnetic flux density (\vec{B}) due to straight conductor of finite length.
(06 Marks)
b. If H in a region is $2 x \hat{a}_{y}+(3 y-2) \hat{a}_{z}$, find the current density at the origir.
(06 Marks)
c. Given the magnetic field $\vec{H}=2 r^{2}(z+1) \sin \phi \hat{a}_{\phi}$, verify Stoke's theorem for the portion of cylindricai surface defined by $r=2, \frac{\pi}{4}<\phi<\frac{\pi}{2}, 1<z<1.5$.
(08 Marks)

PART - B

5 a. Find the magnet ic flux density due to long current carrying conductor using vector magnetic potential.
(08 Marks)
b. Derive the expression for boundary conditions, if the field lines are tangent and normal to the boundary line between two media's in static magnetic field.
(06 Marks)
c. A solenoid with air core has 2000 turns and a length of 500 mm , core radius 40 mm . Find its inductance.
(06 Marks)

6 a. Derive the modification of Ampere's circuit law to suit for time varying conditions.
(06 Marks)
b. Explain Maxwell's equations in point and integral form. Establish relationship between conduction current density and displacement current density for the given field $E=E_{0} \sin \omega t$
(08 Marks)
c. Do the fields $E=E_{m} \sin x \sin t \hat{a}_{y}$ and $\vec{H}=\frac{E_{m}}{\mu} \cos x \cos t \hat{a}_{z}$. Satisfy Maxwell's equations. Verify.
(06 Marks)
7 a. Derive an expression for electric and magnetic wave equations.
(06 Marks)
b. For an electromagnetic wave propagating in free space, show that $\frac{E}{H}=\eta$.
(08 Marks)
c. Find skin depth and surface resistance of copper conductor at 100 MHz having conductivity $\sigma=5.8 \times 10^{7} \mathrm{~J} / \mathrm{m}$ and $\mu_{\mathrm{r}}=100$.
(06 Marks)
8 a. Explain the reflection of uniform plane wave with normal incidence at a plane dielectric boundary.
(10 Marks)
b. Write short notes on:
(i) Reflection co-efficient.
(ii) Standing wave ratio.
(10 Marks)

MATDIP301
Third Semester B.E. Degree Examination, Dec.2017/Jan. 2018 Advanced Mathematics - I

Time: 3 hrs.
Max. Marks:100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

1 a. Find the modulus and amplitude of $\frac{4+2 i}{2-3 i}$.
(06 Marks)
b. Express the complex number $2+3 i+\frac{1}{1-\mathrm{i}}$ in the form $\mathrm{a}+\mathrm{ib}$.
(07 Marks)
c. Simplify $\frac{(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{4}(\cos 4 \theta-\mathrm{i} \sin 4 \theta)^{5}}{(\cos 4 \theta+\mathrm{i} \sin 4 \theta)^{3}(\cos 5 \theta+\mathrm{i} \sin 5 \theta)^{-4}}$.
(07 Marks)

2
a. Find the $\mathrm{n}^{\text {th }}$ derivative of $\mathrm{e}^{\mathrm{ax}} \sin (\mathrm{bx}+\ell)$.
(06 Marks)
b. Find the $n^{\text {th }}$ derivative of $\frac{x^{2}}{2 x^{2}+7 x+6}$.
(07 Marks)
c. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$.
(07 Marks)
3 a. If ϕ is the angle between the tangent and radius vector to the curve $r=f(\theta)$ at any point (r, θ), prove that $\tan \theta=\frac{r d \theta}{d r}$
(06 Marks)
b. Find the angle of intersection between the curves $r^{n}=a^{n} \cos n \theta$ and $r^{n}=b^{n} \sin n \theta$.
c. Using Maclaurin's series, expand $\tan x$ up to the term containing x^{5}.
(07 Marks)
(07 Marks)

4 a. If $Z=f(x+c t)+\phi(x-c t)$, prove that $\frac{\partial^{2} z}{\partial t^{2}}=C^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
(06 Marks)
b. If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \tan u$.
(07 Marks)
c. If $u=f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
(07 Marks)

PART - B

5
a. Obtain the reduction formula for $\int \cos ^{n} x d x$.
(06 Marks)
b. Using reduction formula evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} d x$.
(07 Marks)
c. Evaluate $\int_{0}^{1} \int_{0}^{1} e^{x+y} d x d y$.
(07 Marks)

6 a. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z d x d y d z$.
b. Prove that $p(\mathrm{~m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})}$.
(07) Marks)
(07 Marks)
c. Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
(06 Marks)
(06 Marks)
(07 Marks)
(07 Marks)

8 a. Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=-2 \cosh x$.
b. Solve $\left(D^{2}-4 D+3\right) y=\sin 3 x \cos 2 x$.
(06 Marks)
(07 Marks)
c. Solve $\frac{d^{2} y}{d x^{2}}+4 y=x^{2}+\cos 2 x$.

